5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2005/03/05 | Kummer曲面[Kummer Surface]
类别(∑〖数学〗)
|
评论
(0)
|
阅读(53)
|
发表于 22:17
The Kummer surfaces are a family of
quartic surfaces
given by the algebraic equation
(1)
where
(2)
p, q, r,
and
s
are the
tetrahedral coordinates
(3)
(4)
(5)
(6)
and w is a parameter which, in the above plots, is set to w = 1. The above plots correspond to
(7)
(double sphere), 2/3, 1
(8)
(
Roman surface
),
,
(9)
(four planes), 2, and 5. The case
corresponds to four real points.
The following table gives the number of
ordinary double points
for various ranges of
corresponding to the preceding illustrations.
4 12
4 12
16 0
16 0
The Kummer surfaces can be represented parametrically by hyperelliptic
theta functions/u].Most of the Kummer surfaces admit 16 [u]ordinary double points
, the maximum possible for a
quartic surface
. A special case of a Kummer surface is the
tetrahedroid
.
Nordstrand gives the implicit equations as
(10)
or
(11)
0
评论
Comments
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]