5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2005/03/01 | 双曲抛物面[Hyperbolic Paraboloid]
类别(∑〖数学〗)
|
评论
(0)
|
阅读(241)
|
发表于 17:08
<APPLET CODE="http://mathworld.wolfram.com/Live.class" CODEBASE="live" ARCHIVE="http://mathworld.wolfram.com/live.jar" ALIGN=MIDDLE WIDTH=200 HEIGHT=200 ALT="Hyperbolic paraboloid 1"> <PARAM NAME="input_file" VALUE="http://mathworld.wolfram.com/hyperpa1.m"> <PARAM NAME="input_archive" VALUE="http://mathworld.wolfram.com/zip/hyperpa1.zip">
[Ctrl+A 全部选择 提示:你可先修改部分代码,再按运行]
The
quadratic
and
doubly ruled surface
given by the Cartesian equation
(1)
(left figure). An alternative form is
(2)
(right figure; Fischer 1986), which has
parametric equations
(3)
(4)
(5)
(Gray 1997, pp. 297-298).
The coefficients of the
first fundamental form
are
(6)
(7)
(8)
and the
second fundamental form
coefficients are
(9)
(10)
(11)
giving
surface area
element
(12)
The
Gaussian curvature
is
(13)
and the
mean curvature
is
(14)
Three skew lines always define a one-sheeted
hyperboloid
, except in the case where they are all parallel to a single
plane
but not to each other. In this case, they determine a hyperbolic paraboloid (Hilbert and Cohn-Vossen 1999, p. 15).
0
评论
Comments
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]