5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2004/11/27 | 射束(电子束、光束)[Beam]
类别(Ω〖物理〗)
|
评论
(0)
|
阅读(32)
|
发表于 11:37
In radio astronomy, the word "beam" is used to refer to the response pattern of an
antenna
to a signal. In this context, astronomers speak of
beam convolution
,
beam solid angle
,
beam width
.
The more common use of the word "beam" is to refer to a bar (or rod, shaft, cantilever, etc.) under bending. A beam with one end clamped and the other end free is called a
cantilever
.
Let a beam have length
L
, width
a
, and thickness
h
. Also let the vertical displacement be
, the horizontal displacement be
,and the angular displacement of the beam from the original horizontal (called the neutral surface or axis), and set up a Cartesian coordinate system along the neutral surface. The angular displacement is then given by
(1)
The longitudinal
strain
is
(2)
and the general strain component is
(3)
If
q(x)
is the downward force per unit area and
V(x)
is the shearing force per unit length, then force balance gives
(4)
or
(5)
Similarly, let
M[i/] be the torque (a.k.a. bending moment) per unit length and [i]P
the horizontal force (i.e.,
tension
) per unit area. Then
torque
balance gives
(6)
(7)
Taking the derivative of (7) and plugging in (5) then gives
(8)
But
M
is given by
(9)
where
is the
z
-component of the longitudinal
stress
,and
(10)
where
E
is
Young's modulus
and
is the
Poisson ratio
.Plugging in,
(11)
where
I
is the geometrical moment of inertia, given by
(12)
The geometrical moment of inertia per unit width is then
(13)
so
(14)
where the
flexural rigidity
is defined by
(15)
Plugging (14) into (8) gives
(16)
(17)
Similarly, plugging (14) into (7) gives
(18)
so
(19)
If the
tension
(i.e., horizontal force) vanishes, then
so
(20)
(21)
If
is furthermore a constant (equal to the weight of the bar per unit length), then solving the fourth-order ordinary differential equation (20) for
gives
(22)
For a massless beam,
and the solution to (20) becomes
(23)
The following table summarizes the various constraints on
placed by various boundary conditions on the bar.
<DIV ALIGN="CENTER"> <TABLE CELLPADDING=3 BORDER="1"> <TR><TD ALIGN="LEFT">condition</TD> <TD ALIGN="LEFT">constraints</TD> </TR> <TR><TD ALIGN="LEFT">embedded = clamped = horizontally fixed</TD> <TD ALIGN="LEFT"><IMG WIDTH="42" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg102.gif">, <IMG WIDTH="46" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg103.gif"></TD> </TR> <TR><TD ALIGN="LEFT">pinned = freely supported</TD> <TD ALIGN="LEFT"><IMG WIDTH="42" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg102.gif">, <IMG WIDTH="50" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg104.gif"></TD> </TR> <TR><TD ALIGN="LEFT">free</TD> <TD ALIGN="LEFT"><IMG WIDTH="50" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg104.gif"></TD> </TR> <TR><TD ALIGN="LEFT">no shearing force</TD> <TD ALIGN="LEFT"><IMG WIDTH="53" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg105.gif"></TD> </TR> <TR><TD ALIGN="LEFT">applied force at <IMG WIDTH="44" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg106.gif"></TD> <TD ALIGN="LEFT"> <IMG WIDTH="190" HEIGHT="54" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg107.gif"></TD> </TR> <TR><TD ALIGN="LEFT"> </TD> <TD ALIGN="LEFT"><IMG WIDTH="57" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="http://scienceworld.wolfram.com/physics/bimg108.gif"></TD> </TR> </TABLE> </DIV>
[Ctrl+A 全部选择 提示:你可先修改部分代码,再按运行]
0
评论
Comments
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]