2005/11/08 | 基本单位[Fundamental Unit]
类别(∑〖数学〗) | 评论(0) | 阅读(19) | 发表于 21:05

Let K be a number field with r_1 real embeddings and 2r_2 imaginary embeddings and let r==r_1+r_2-1. Then the multiplicative group of units U_K of K has the form

U_K=={zeta_K^(e_0)epsilon_1^(e_1)epsilon_2^(e_2)...epsilon_r^(e_r):e_i in Z},(1)

where zeta_K is a primitive wth root of unity, w==2 (unless K==Q(i), in which case w==4, or K==Q((1+sqrt(-3))/2), in which case w==6). Thus, U_K is isomorphic to the group C_wxZ^r. The r generators epsilon_i for 1<=i<=r are called the fundamental units of K. Real quadratic number fields and imaginary cubic number fields have just one fundamental unit and imaginary quadratic number fields have no fundamental units.

In a real quadratic field, there exists a special unit eta known as the fundamental unit such that all units rho are given by rho==+/-eta^m, for m==0, +/-1, +/-2, .... The notation epsilon_0 is sometimes used instead of eta (Zucker and Robertson 1976). The fundamental units for real quadratic fields Q(sqrt(D)) may be computed from the fundamental solution of the Pell equation

T^2-DU^2==+/-4,(2)

where the sign is taken such that the solution (T,U) has smallest possible positive T (LeVeque 1977; Cohn 1980, p. 101; Hua 1982; Borwein and Borwein 1986, p. 294). If the positive sign is taken, then one solution is simply given by (T,U)==(2x,2y), where (x,y) is the solution to the Pell equation

x^2-Dy^2==1.(3)

However, this need not be the minimal solution. For example, the solution to Pell equation

x^2-21y^2==1(4)

is (x,y)==(55,12), so (T,U)==(2x,2y)==(110,24), but (T,U)==(5,1) is the minimal solution. Given a minimal (T,U) (Sloane's A048941 and A048942), the fundamental unit is given by

eta==1/2(T+Usqrt(D))(5)

(Cohn 1980, p. 101).

The following table gives fundamental units for small D.

Deta(D)Deta(D)
21+sqrt(2)54485+66sqrt(54)
32+sqrt(3)5589+12sqrt(55)
51/2(1+sqrt(5))5615+2sqrt(56)
65+2sqrt(6)57151+20sqrt(57)
78+3sqrt(7)5899+13sqrt(58)
81/2(1+2sqrt(8))59530+69sqrt(59)
103+sqrt(10)601/2(8+sqrt(60))
1110+3sqrt(11)611/2(39+5sqrt(61))
127+2sqrt(12)6263+8sqrt(62)
131/2(3+sqrt(13))638+sqrt(63)
1415+4sqrt(14)658+sqrt(65)
154+sqrt(15)6665+8sqrt(66)
174+sqrt(17)6748842+5967sqrt(67)
1817+4sqrt(18)681/2(8+sqrt(68))
19170+39sqrt(19)691/2(25+3sqrt(69))
201/2(4+sqrt(20))70251+30sqrt(70)
211/2(5+sqrt(21))713480+413sqrt(71)
22197+42sqrt(22)7217+2sqrt(72)
2324+5sqrt(23)731068+125sqrt(73)
245+sqrt(24)7443+5sqrt(74)
265+sqrt(26)7526+3sqrt(75)
2726+5sqrt(27)76170+39sqrt(19)
281/2(16+3sqrt(28))771/2(9+sqrt(77))
291/2(5+sqrt(29))7853+6sqrt(78)
3011+2sqrt(30)7980+9sqrt(79)
311520+273sqrt(31)809+sqrt(80)
321/2(6+sqrt(32))829+sqrt(82)
3323+4sqrt(33)8382+9sqrt(83)
3435+6sqrt(34)8455+6sqrt(84)
356+sqrt(35)851/2(9+sqrt(85))
376+sqrt(37)8610405+1122sqrt(86)
3837+6sqrt(38)8728+3sqrt(87)
3925+4sqrt(39)88197+21sqrt(88)
401/2(6+sqrt(40))89500+53sqrt(89)
4132+5sqrt(41)9019+2sqrt(90)
4213+2sqrt(42)911574+165sqrt(91)
433482+531sqrt(43)921/2(48+5sqrt(92))
441/2(20+3sqrt(44))931/2(29+3sqrt(93))
451/2(7+sqrt(45))942143295+221064sqrt(94)
4624335+3588sqrt(46)9539+4sqrt(95)
4748+7sqrt(47)961/2(10+sqrt(96))
487+sqrt(48)975604+569sqrt(97)
507+sqrt(50)9899+10sqrt(98)
5150+7sqrt(51)9910+sqrt(99)
5218+5sqrt(13)10110+sqrt(101)
531/2(7+sqrt(53))102101+10sqrt(102)

The following table given the squarefree numbers D for which the denominator of eta(D) is n for n==1 or 2. These sequences turn out to be related to Eisenstein's problem: there is no known fast way to compute them for large D (Finch).

nSloanesquarefree numbers D with denom(eta(D))==n
1A1079975, 13, 21, 29, 53, 61, 69, 77, 85, 93, ...
2A1079982, 3, 6, 7, 10, 11, 14, 15, 17, 19, 22, ...
0

评论Comments

日志分类
首页[1408]
∑〖数学〗[349]
Ω〖物理〗[357]
¤〖天文〗[343]
℃〖化学〗[359]