5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2005/08/15 | Tschirnhausen变换[Tschirnhausen Transformation]
类别(∑〖数学〗)
|
评论
(2)
|
阅读(92)
|
发表于 20:42
A transformation of a
polynomial
equation
which is
of the form
where
and
are
polynomials
and
does not vanish at a root of
. The
cubic equation
is a special case of such a transformation. Tschirnhaus (1683) showed that a
polynomial
of degree
can be reduced to a form in which the
and
terms have 0
coefficients
. In 1786, E. S. Bring showed that a general
quintic equation
can be reduced to the form
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the
,
and
terms for a general
polynomial
equation of degree
.
0
评论
Comments
(
2
条)
[[存ぜぬ 多変数の場合 ]
2007/2/3 0:14:29
板凳
In two or more variables,
I didn't know that there was a conclusion formula!
I didn't know that there was Resultants!
[[Tschi etc]]
2007/2/2 16:48:25
沙发
8518.teacup.com/mynb/bbs
<<
1
立即注册5D通行证
Join 5D!
发表留言
post
正在发送...
Send...
游客
Guest
用 户
Name
:
密 码
Password
:
内 容
Comment
:
主 页
Homepage
:
验 证
Verify
:
换一个
change the code
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]