5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2005/08/07 | 拉格朗日括号[Lagrange Bracket]
类别(∑〖数学〗)
|
评论
(0)
|
阅读(45)
|
发表于 10:00
Let
be any functions of two variables
. Then the expression
(1)
is called a Lagrange bracket (Lagrange 1808; Whittaker 1944, p. 298).
The Lagrange brackets are
anticommutative
,
(2)
(Plummer 1960, p. 136).
If
are any functions of
variables
, then
(3)
where the summation on the right-hand side is taken over all pairs of variables
in the set [uimg]http://mathworld.wolfram.com/images/equations/LagrangeBracket/inline7.gif[/img].
But if the transformation from
to
is a
contact transformation
, then
(4)
giving
(5)
(6)
(7)
(8)
Furthermore, these may be regarded as partial differential equations which must be satisfied by
, considered as function of
in order that the transformation from one set of variables to the other may be a contact transformation .
Let
be
independent functions of the variables
. Then the
Poisson bracket
is connected with the Lagrange bracket
by
(9)
where
is the
Kronecker delta
. But this is precisely the condition that the determinants formed from them are reciprocal (Whittaker 1944, p. 300; Plummer 1960, p. 137).
0
评论
Comments
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]