5D艺术网首页
商城
|
资讯
|
作品
|
博客
|
教程
|
论坛
登录
注册
加为好友
发短消息
来自:
性别:秘密
最后登录:2007-10-25
http://iamet.5d.cn/
首页
|
新闻
|
话题
|
博客
|
相册
|
艺术作品
|
社交关系
|
留言板
|
社交圈
2005/06/09 | 高斯分圆公式[Gauss's Cyclotomic Formula]
类别(∑〖数学〗)
|
评论
(3)
|
阅读(193)
|
发表于 23:22
Let
p
> 3 be a
prime number
, then
where
R(x,y)
and
S(x,y)
are
homogeneous polynomials
in
x
and
y
with integer
coefficients
. Gauss (1965, p. 467) gives the coefficients of
R
and
S
up to
p
= 23.
Kraitchik (1924) generalized Gauss's formula to odd
squarefree
integers
n
> 3. Then Gauss's formula can be written in the slightly simpler form
where
and
have integer coefficients and are of degree
and
, respectively, with
the
totient function
and
a
cyclotomic polynomial
. In addition,
is symmetric if n is
even
;otherwise it is antisymmetric.
is symmetric in most cases, but it antisymmetric if
n
is of
the form
(Riesel 1994, p. 436). The following table gives the first few
and
s (Riesel 1994, pp. 436-442).
[left]
n
[/left]
[left]5[/left]
1
[left]7[/left]
[left]11[/left]
0
评论
Comments
日志分类
首页
[1408]
∑〖数学〗
[349]
Ω〖物理〗
[357]
¤〖天文〗
[343]
℃〖化学〗
[359]